9 research outputs found

    A Stronger Theorem Against Macro-realism

    Full text link
    Macro-realism is the position that certain "macroscopic" observables must always possess definite values: e.g. the table is in some definite position, even if we don't know what that is precisely. The traditional understanding is that by assuming macro-realism one can derive the Leggett-Garg inequalities, which constrain the possible statistics from certain experiments. Since quantum experiments can violate the Leggett-Garg inequalities, this is taken to rule out the possibility of macro-realism in a quantum universe. However, recent analyses have exposed loopholes in the Leggett-Garg argument, which allow many types of macro-realism to be compatible with quantum theory and hence violation of the Leggett-Garg inequalities. This paper takes a different approach to ruling out macro-realism and the result is a no-go theorem for macro-realism in quantum theory that is stronger than the Leggett-Garg argument. This approach uses the framework of ontological models: an elegant way to reason about foundational issues in quantum theory which has successfully produced many other recent results, such as the PBR theorem.Comment: Accepted journal version. 10 + 7 pages, 1 figur

    No ψ\psi-epistemic model can fully explain the indistinguishability of quantum states

    Full text link
    According to a recent no-go theorem (M. Pusey, J. Barrett and T. Rudolph, Nature Physics 8, 475 (2012)), models in which quantum states correspond to probability distributions over the values of some underlying physical variables must have the following feature: the distributions corresponding to distinct quantum states do not overlap. This is significant because if the distributions do not overlap, then the quantum state itself is encoded by the physical variables. In such a model, it cannot coherently be maintained that the quantum state merely encodes information about underlying physical variables. The theorem, however, considers only models in which the physical variables corresponding to independently prepared systems are independent. This work considers models that are defined for a single quantum system of dimension dd, such that the independence condition does not arise. We prove a result in a similar spirit to the original no-go theorem, in the form of an upper bound on the extent to which the probability distributions can overlap, consistently with reproducing quantum predictions. In particular, models in which the quantum overlap between pure states is equal to the classical overlap between the corresponding probability distributions cannot reproduce the quantum predictions in any dimension d3d \geq 3. The result is noise tolerant, and an experiment is motivated to distinguish the class of models ruled out from quantum theory.Comment: 5+5 page

    Does a Computer have an Arrow of Time?

    Get PDF
    In [Sch05a], it is argued that Boltzmann's intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. [Haw94] presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between thermodynamics and an arrow of time for computers. The principal arguments put forward by Schulman and Hawking will be shown to fail. It will be shown that any computational process that can take place in an entropy increasing universe, can equally take place in an entropy decreasing universe. This conclusion does not automatically imply a psychological arrow can run counter to the thermodynamic arrow. Some alternative possible explana- tions for the alignment of the two arrows will be briefly discussed.Comment: 31 pages, no figures, publication versio

    Revisiting the Gaia Hypothesis: Maximum Entropy, Kauffman’s ‘Fourth Law’ and Physiosemeiosis

    Full text link

    No ψ

    No full text

    Running CMS software on GRID Testbeds

    No full text
    Starting in the middle of November 2002, the CMS experiment undertook an evaluation of the European DataGrid Project (EDG) middleware using its event simulation programs. A joint CMS-EDG task force performed a "stress test" by submitting a large number of jobs to many distributed sites. The EDG testbed was complemented with additional CMS-dedicated resources. A total of ~ 10000 jobs consisting of two different computational types were submitted from four different locations in Europe over a period of about one month. Nine sites were active, providing integrated resources of more than 500 CPUs and about 5 TB of disk space (with the additional use of two Mass Storage Systems). Descriptions of the adopted procedures, the problems encountered and the corresponding solutions are reported. Results and evaluations of the test, both from the CMS and the EDG perspectives, are described

    Coordination properties of dithiobutylamine (DTBA), a newly introduced protein disulfide reducing agent

    No full text
    The acid-base properties and metal-binding abilities of (2S)-2-amino-1,4-dimercaptobutane, otherwise termed dithiobutylamine (DTBA), which is a newly introduced reagent useful for reducing protein and peptide disulfides, were studied in solution using potentiometry, (1)H NMR spectroscopy, spectropolarimetry, and UV-vis spectroscopy. The list of metal ions studied here includes Zn(II), Cd(II), Ni(II), Co(II), and Cu(I). We found that DTBA forms specific and very stable polynuclear and mononuclear complexes with all of these metal ions using both of its sulfur donors. DTBA forms complexes more stable than those of the commonly used disulfide reducing agent DTT, giving it more interference capacity in studies of metal binding in thiol-containing biomolecules. The ability of DTBA to strongly bind metal ions is reflected in its limited properties as a thiol protectant in their presence, which is manifested through slower disulfide reduction kinetics. We found that this effect correlated with the stabilities of the complexes. Additionally, the reducing properties of DTBA toward MMTS-modified papain (MMTS = S-methylmethanethiosulfonate) were also significantly affected by the investigated metal ions. In this case, however, electrostatic interactions and stereospecific effects, rather than metal-binding abilities, were found to be responsible for the reduced protective properties of DTBA. Despite its limitations, a high affinity toward metal ions makes DTBA an attractive agent in competition studies with metalloproteins
    corecore